Measuring the Planck's constant with Arduino

[et_pb_section fb_built="1" _builder_version="4.19.4" _module_preset="default" hover_enabled="0" global_colors_info="{}" sticky_enabled="0"][et_pb_row column_structure="1_2,1_2" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_column type="1_2" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.19.4" _module_preset="default" global_colors_info="{}" min_height="279.2px" custom_padding="||0px|||"]

With this shield produced by Steplb it's easy to study the Planck's constant using a normal Arduino Board. The method is based on studying the led threshold voltage. We provide 4 different leds with given wavelength.

This shield makes the experiment repeatable and prevents students from damaging the components. The shield comes with a user manual. Using the Arduino board allows you to make measurements with a computer.

 

Contact us for details

 

 

 

 

[/et_pb_text][/et_pb_column][et_pb_column type="1_2" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_image src="https://www.servocity.eu/wp-content/uploads/2023/02/costante_di_planck.jpg" title_text="costante_di_planck" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][/et_pb_image][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.19.4" _module_preset="default" hover_enabled="0" sticky_enabled="0"]

What will you Learn

[/et_pb_text][et_pb_text _builder_version="4.19.4" _module_preset="default" hover_enabled="0" sticky_enabled="0"]

Content

[/et_pb_text][et_pb_text _builder_version="4.19.4" _module_preset="default" hover_enabled="0" global_colors_info="{}" sticky_enabled="0"]

Theory of operation

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][et_pb_image src="https://www.servocity.eu/wp-content/uploads/2023/02/planck.jpg" title_text="planck" _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"][/et_pb_image][et_pb_text _builder_version="4.19.4" _module_preset="default" global_colors_info="{}"]

Light-emitting diodes (LEDs) convert electrical energy into light energy. They emit radiation (photons) of visible wavelengths when they are forward biased. This is caused by electrons from the `N' region in the LED giving up light as they fall into holes in the `P' region. The graph above shows the current-voltage curve (IV curve) for a typical LED. The 'turn-on' voltage Ut is about the same as the energy lost by an electron as it falls from the N to the P region. In this experiment you will find the point at which the light `goes on' by gradually adjusting the voltage.

The energy produced by photons (hc/λ), is assumed to be equal to that lost by each electron, qV: where q is the charge on an electron (q = e = 1.6 x 10^-19 C), U is the turn-on voltage, λ is the wavelength of light emitted in metres, and c is speed of light c = 3.0 X10^8 m/s.

Above you can also see calculation for the measurement error. LED manufacturers state the wavelength of the LEDs with the precision about Δλ = 20nm - 30nm and the precision of my voltmeter is ΔU = 0.01V.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Shopping cart0
There are no products in the cart!
Continue shopping
0